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Abstract 
In this study, temporal variability of ice cover in the Great Lakes is investigated using historical 
satellite measurements undated from 1973 to 2015. With high ice cover in the last two winters 
(2013/14 and 2014/15), the trend was significantly reduced, compared to the period 1973-2013. 
The decadal variability in lake ice attributed to the decreased trend. It was found that 1) Great 
Lakes ice cover has a linear relationship with Atlantic Multidecadal Oscillation (AMO), similar 
to the relationship of lake ice cover with the North Atlantic Oscillation (NAO), and 2) a weak 
quadratic relation with the Pacific Decadal Oscillation (PDO), similar to the relationship of lake 
ice cover with the Niño3.4. Based on these dynamic relationships, the original multiple variable 
regression models established using the indices of NAO and Niño3.4 is updated by adding both 
AMO and PDO, as well their competing mechanism. With the AMO and PDO added, the 
correlation between the model and observation increases to 0.68, compared to 0.44 using NAO 
and Niño3.4 only.  The new model was used to project the annual maximum ice coverage using 
projected indices of Niño3.4, NAO, PDO, and AMO. On November 30, 2015, the AMIC of 
2015/16 winter was projected to be 31%. 
 
 
 
 
 



2 
 

1. Introduction 
The Laurentian Great Lakes are located in the mid-latitude area of eastern North America. The 
westerly jet stream is located aloft at varying latitudes in the region. The fluctuations of the 
westerly jet stream are controlled by the North America ridge-trough system (Bai and Wang 
2012), which are influenced by large-scale atmospheric teleconnection patterns such as ENSO 
(El Niño Southern Oscillation) and NAO (North Atlantic Oscillation) (Wang et al. 2010; Bai et 
al. 2012). The fluctuation of the jet stream causes large variations in the Great Lakes region on 
synoptic, seasonal, and interannual time scales, leading to large uncertainties in predictions of 
regional climate and ice cover. 

Bai et al. (2012) conducted a systematic review of literature on Great Lakes climate and ice 
cover. Through thorough data analyses, they revealed several important findings: 1) Great Lakes 
ice cover and NAO have a linear relationship, 2) Great Lakes ice cover and Niño3.4 have a 
quadratic relationship, and 3) both Niño3.4 and NAO have competing impacts on lake ice cover; 
however, neither of them dominates. Based on these findings, a regression model was established 
to hindcast the lake ice cover using only NAO and Niño3.4 indices with a correlation of 0.56. 
Using this regression model, some extreme (both mild and severe) ice covers were 
underestimated. The model projected less ice for severe winters and more ice for the extreme 
mild winters. Although this model has been used since 2012 in early winter (between late 
December to early January) to predict annual maximum ice coverage (AMIC) each year using 
the projected NAO and Niño3.4 indices, it is often seen that the predicted AMIC is 
systematically lower than the observed AMIC in the severe winters. This indicates that some 
important predictive factors are missing. 

With the last five years of data added to the ice dataset (Wang et al. 2012b), particularly with 
high ice cover during the last two winters, a timely update of the data is necessary for better 
understanding of mechanisms of decadal and multidecadal variability in lake ice (Magnuson et 
al. 2000; Ghanbari et al. 2009; Weyhenmeyer et al. 2011; Mishra et al. 2011). The purpose of 
this study is to establish updated regression models for better seasonal hindcast and projection of 
lake ice cover by using projected indices of teleconnection patterns.   
 
2. Data 
The lake ice coverage used in this study is from the Great Lakes Ice Atlas, updated from 1973-
2015, based on the previous ice atlas (Wang et al. 2012b; 
http://www.glerl.noaa.gov/data/pgs/glice/glice.html). Wang et al. (2012b) have described the 
data sources, processing procedure, and quality control in great detail. 
 
The Niño3.4 SST (Sea Surface Temperature) anomaly index was used as a marker of ENSO 
variability to identify the warm and cold episodes during 1973-2015 based on a threshold of +/- 
0.5oC. Cold and warm episodes are defined as those periods for which the threshold is met for a 
minimum of five consecutive over-lapping seasons such as November-December-January (NDJ), 
December-January-February (DJF), January-February-March (JFM), etc. Otherwise, the winter 
is defined as ENSO-neutral. The index is defined as the 3-month running mean of ERSST.v3 
(Extended Reconstructed Sea Surface Temperature Version 3) SST anomalies in the Niño3.4 
region (5oN-5oS, 120o-170oW; obtained from NOAA/CPC (Climate Prediction Center) 
http://www.cpc.noaa.gov/products/analysis monitoring/ ensostuff/ensoyears.shtml). The strong 
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warm (cold) winters are defined as the DJF periods when the mean index exceeds 1.0 (-1.0) °C, 
and weak warm (cold) winters are defined as the DJF periods when the mean index is greater 
than 0.5 (-0.5) °C, but less than 1.0 (-1.0) °C.  
 
The monthly NAO index from 1973 to 2015 was obtained from the Climatic Research Unit, UK 
(http://www.cru.uea.ac.uk/cru/data/NAO.htm). The NAO is defined as the normalized pressure 
difference between a station on the Azores and one on Iceland. A winter is defined as having a 
positive (negative) phase when the DJF mean index exceeds +0.5 (-0.5) standard deviation, 
otherwise a winter is defined as NAO-neutral. 
 
The Pacific Decadal Oscillation (PDO) index is the leading empirical orthogonal function (EOF) 
of monthly sea surface temperature anomalies (SSTA) over the North Pacific (poleward of 
20° N) after the global mean SST has been removed. The PDO index is the standardized 
principal component time series (Mantua et al. 1997; Zhang et al. 1997) 
(http://research.jisao.washington.edu/pdo/PDO.latest; 
https://www.ncdc.noaa.gov/teleconnections/pdo/). 
 
The Atlantic Multidecadal Oscillation (AMO) was identified by Schlesinger and Ramankutty 
(1994). The AMO signal is usually defined from the patterns of SST variability in the North 
Atlantic once any linear trend has been removed. This detrending is intended to remove the 
influence of greenhouse gas-induced global warming from the analysis. The AMO index is 
obtained from http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. 
 

3.  Results 
3.1 Annual maximum ice concentration 1973-2015 
Great Lakes ice cover has been declining since 1973 (Wang et al. 2012a). With the last five years 
of data added to the Great Lakes Environmental Research Laboratory (GLERL) ice cover data 
base (Fig. 1), the time series of AMIC has a downward trend for all five individual lakes, and the 
entire basin, similar to the period 1973-2010 (Wang et al. 2012a). The linear trend was estimated 
using the least squares regression. The linear equation is in the form: x=a+bt, where x is the ice 
concentration, t is the year, a is the x-intercept constant (the value of x for t=1973), and b is the 
slope of the line (namely, the rate of change in x with a time increment of t).  
 

 

Figure 1. AMIC (in %) of the 
entire 5-Great Lakes for the period 
1973-2015. The linear line is the 
trend in AMIC calculated from the 
least square fit method. Units for 
the vertical axes are in %. 
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3.2 Decadal variability 
With the last five years (2011-2015) of data added to the previous time series (Wang et al. 
2012a), the interannual variability further stands out, as does the decadal variability (Fig. 2). The 
decadal variability in small lakes was investigated by previous studies (Magnuson et al. 2000; 
Ghanbari et al. 2009; Weyhenmeyer et al. 2011). During this 43-year period, three high ice bands 
stand out: 1977-79, 1994, and 2014-15, with separation periods of 17 years and 21 years, 
respectively. Similarly, three low ice bands also stand out: 1983, 1998-2002, and 2010-2013, 
separated by around 18 and 12 years, respectively. The longest low ice band started in 1998 and 
lasted to 2013. The 1997/98 El Niño was the largest El Niño event of the century (Van Cleave et 
al. 2014), which caused a regime shift in lake ice cover and other environmental components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  Development of hindcast regression models 
Based on the investigation above, multi-variable regression models can be constructed following 
Bai et al. (2012). The following model is the same as Bai et al. (2012) except that the data are 
extended to 2015, and it only includes NAO, Niño3.4, and their interaction: 
 
Y=0.45 -0.016Niño34 -0.5(Niño3.4)2 -0.42NAO+ 0.29NAO•(Niño3.4)2  (1) 
 
where Y is normalized AMIC. The correlation between the model hindcast time series and the 
observed AMIC is R=0.44 (R2=0.2) (see Fig. 3, blue). 
 
When the AMO index is added to eq. (1), the correlation between the model and observation 
increases to R= 0.62 (R2=0.38; see Fig. 3a, red) from the original 0.44 (figure not shown). The 
total variance increases to 38% from the original 20% by just adding AMO. 
 
When the PDO index is added to eq. (1), the correlation also improves (R=0.56; not shown), 
compared to eq. (1), indicating that adding a linear impact of PDO improves the prediction skill, 
although not as high as AMO. 
        
When both PDO and AMO are added to eq. (1), the correlation increases to R=0.64 (R2=0.41), 
improving the hindcast skill compared to the individual contribution by the AMO (0.62) or the 
PDO (0.56). 
 

 

Figure 2. Time series of AMIC 
during 1973-2015. The thick line is 
the 5-year running mean, 
indicating the decadal signal. 
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As discussed above, the interaction or competing mechanisms of the teleconnection patterns on 
ice cover should be considered. These competing mechanisms include: 1) the NAO and Niño3.4 
on interannual time scales, as discussed in Bai et al. (2012), 2) the NAO and AMO, Niño3.4 and 
PDO on crossing interannual and decadal time scales, and 3) the AMO and PDO on decadal time 
scales. Thus, the following comprehensive regression model is constructed: 
 
Y=0.45 -0.13Niño3.4 -0.4(Niño3.4)2 -0.4NAO+ 0.21NAO•(Niño3.4)2 
        -0.5AMO+0.15PDO+0.05PDO2 

+0.01AMO•NAO-0.08PDO2•(Niño3.4)2 
+0.16PDO2•AMO             (2) 

 
The correlation further increases to R=0.684 (R2=0.47). Therefore, including AMO and PDO and 
their interactions significantly improves the prediction skill (R=0.68) (Fig. 3, red) from the 
original model that only includes NAO and Niño3.4 (R=0.44; Fig. 3, blue). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Projection of Great Lakes AMIC during 2015/16 winter 
The Great Lakes Climate Outlook required lake ice cover projection in the middle of the 
winter in 2016. On November 30, 2015, we collected available projected indices of Niño3.4, 
NAO, PDO, and AMO during December-January-February. It came out with Niño3.4=2.0, 
NAO=1.2, AMO=0.342, and PDO=0.5. Using model 1 (original using only NAO and 
Niño3.4 indices) and model 2 (new model using all four indices), AMIC in winter of 2015/16 
was projected to be 38% and 31%, respectively, indicating model 2 produces lower extreme 
value than model 1. Figure 4 shows the observed ice cover on December 22, 2015 (left), 
which is nearly ice free, because the 2015/16 winter experiences so far the simultaneous 
strong El Niño and +NAO year. The observation showed that the AMIC on the Great Lakes 
was 34% on February 14, 2016 (Fig. 4, right), which was very close to the projection on 
November 30, 2015, with the relative error being less than 10%.  

 

Figure 3. Original hindcast (Bai et 
al.,2012;blue), AMIC (black), and 
model with all the effects from 
NAO, AMO, Nino3.4, and PDO, and 
their combined competing 
mechanisms (red). The 
corresponding correlation between 
the model results and the observed 
AMIC are given.  
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Figure 4. Satellite measured ice concentration in the Great Lakes on December 22, 2015 (left) 
and on February 14, 2016 (right, 34% coverage). 
 
During the simultaneous El Niño and +NAO winter, surface air temperature experienced the 
warmest anomaly over the Great Lakes region (Fig. 5a), compared with the other combinations. 
Generally speaking, El Niño (La Niña) would produce warm (cold) anomalies, while positive 
(negative) NAO would produce warm (cold) anomalies, However, the competing effect of both 
forcings depends on their strength at the case-by-case manner. 
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6.  Conclusions 
On the basis of the above investigation, the following conclusions can be drawn: 

1) With the last five years of data (2011-2015) added to the analysis, in addition to large 
variability on interannual time scales, decadal variability in Great Lakes ice cover stands 
out. Lake ice downward trend reduced for the period 1973-2015, compared to the period 
1973-2010.  

2) Statistic regression hindcast models were tested using all four teleconnection patterns: 
NAO and Niño3.4 on interannual time scales, and AMO and PDO on decadal time scales. 

 

 

a) b) 

d) 

Figure 5. Composite maps 
of surface air temperature 
anomalies in North America 
for winters during  
(a) El Niño&+NAO;  
(b) El Niño&-NAO;  
(c) La Niña&+NAO; and  
(d) La Niña&-NAO.  
The intervals of SAT 
anomalies are 0.5°C, and 
dashed lines denote negative 
anomalies. 

d) c) 
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The best model constructed here can capture 47% of the total variance of ice cover. The 
correlation coefficient between the hindcast model results and observations is 0.68. This 
model includes not only the interactions/competing effects within interannual time scales 
(NAO and Niño3.4) and within decadal time scales (AMO and PDO), but also includes 
the competing effects across interannual and decadal time scales such as within Niño3.4 
and PDO, and within NAO and AMO. 

3) The regression models were used to project AMIC in the 2015/16 winter, which was 31% 
using the new model, and 38% using the original model that include only Niño3.4 and 
NAO indices. 
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